Study of neutron-rich hypernuclei by the (π-,K+) reaction at J-PARC

Hitoshi Sugimura For J-PARC E10 Collaboration

Production Reactions

Important neutron rich hypernuclei (large isospin)

Mixing in Neutron-rich Hypernuclei

ΛN-ΣN mixing effect is important

Coherent ΛN - ΣN mixing originally introduced to explain A=3-5 hypernuclei Normal **SN** interaction $B_{\Lambda} \simeq 4.4 \text{ MeV}$ **Coherent ΛΝ-ΣΝ mixing effect** B_∧ ~ 4.4 + 1.4 MeV Precise measurement of B.E. \rightarrow Estimation of mixing effect

Past studies of neutron-rich Λ hypernuclei

- **Experiments with (stopped-K⁻**,π⁺) reaction
 - KEK-PS in 1996 and FINUDA/DAFNE in 2006
 - Only upper-limits of branching ratio were obtained
 - New result from FINUDA/DAΦNE
 - ⁶Li(stopped-K⁻,π⁺) reaction
 - saw also weak decay kinematics
 - 3 events of candidate of ⁶ ^A H
- Interesting , need more events
- Experiment with (π⁻,K⁺) reaction
 - KEK-521 produced ¹⁰ Li

KEK-PS-E521 experiment

Pilot experiment to produce n-rich Λ hypernuclei

- P.K.Saha et al. PRL 94 (2005) 052501.
- DCX reaction with ¹⁰B target
 - ¹⁰B(π⁻,K⁺)¹⁰^ΛLi
- Experimental condition
 - Pion beam momentum
 - 1.2 GeV/c → 11.3 nb/sr
 - 1.05 GeV/c \rightarrow 5.8 nb/sr
 - 47 events in Λ bound region
- Proposed experiment is base on this reaction

DCX reaction mechanism

- ΛΝ-ΣΝ coupled channel calculation for the DCX reaction by Harada et al.
- Spectrum is sensitive to mixing interaction $V_{\Lambda\Sigma}$ and Σ-N interaction W_{Σ} T. Harada et al., Phys Rev C79 (2009) 014603.

- Bound region $\rightarrow V_{\Lambda\Sigma}$ - Continuum region $\rightarrow W_{\Sigma}$ More yield is necessary to make detailed discussions

J-PARC E10 Experiment

Production of ⁶_^H and ⁹_^He hypernuclei

Aim at Experiment

- Production of neutron-rich hypernuclei
 - higher statistics than previous experiments
- Information of Effect of ΛN-ΣN mixing in neutron-rich hypernuclei
 - precise measurement of binding energies

- Method
 - Missing-mass spectroscopy by (π^-, K^+) reaction
 - method has been established at KEK-PS E521

Experimental Setup

- K1.8 beam line
 - 1.2 GeV/c π^- beams
 - Good momentum resolution: Δp/p~3.3x10⁻⁴
- Superconducting Kaon Spectrometer(SKS)
 - Good momentum resolution: Δp/p~1.0x10⁻³
 - Large acceptance : $\Delta \Omega^{\sim} 100 \text{mSr}$

Yield estimation in E10 proposal

⁶ H yields estimated under the run conditions

- 3 weeks with 10M/spill (6 s acc. cycle) \rightarrow 3 T pions

Yields is roughly 6 times larger than previous KEK
 E521

Challenge for High rate beam operation

Upgrade of tracking detector

Upgrades for higher beam intensity

Detectors in K1.8 beam spectrometer

BFT design

- BFT (beam fiber tracker) design
 - 1mm φ scintillating fibers
 - 2 layers staggered by 0.5mm
 - 160 × 2 = 320 fibers
 - Read out by MPPC+EASIROC
 - Flexible and easy to handle

Developed by K. Miwa , R. Honda (Tohoku Univ.) S. Hasegawa(JAEA)

BFT high-rate beam study in June

SSD design

- vertex SSD design
 - **80µm** pitch
 - 6cm×6cm×300mm
 - APV 25 chip
 - Serial Data transfer
 - Accept 10⁵ Hz/strip

- Typical K1.8 beam 5×10⁵ hits/mm/(10M beam)
- 2 s beam spill, duty factor 25% → work at 10M/spill beam

SSD high-rate beam study

Performance Study at J-PARC and RCNP
 ➤ Timing resolution: about 4ns
 ➤ S/N ratio for MIP: about 20
 ➤ Zero-suppression: data size → 2%
 ➤ Efficiency : more than 99%

Summary

- E10 aims to produce neutron-rich Λ hypernuclei,
 ⁶_ΛH and ⁹_ΛHe, close to the neutron drip-line.
- We may obtain information of Λ-N interaction in the extreme condition.
- We studied new detector(Fiber Tracker and Silicon Strip Detecor) under high rate beam. We got result of enough efficiency for high rate.