Study on Λ-hypernuclei at J-PARC with intense pion beams

S.Ajimura, H.Bhang, L.Busso, D.Faso, T.Fukuda, T.Kishimoto, Y.Mizoi, O.Morra, H.Noumi, H.Outa, P.K.Saha, A.Sakaguchi, T.Takahashi

Osaka, Seoul, Torino, INFN, OsakaEC, INAF-IFSI, KEK, RIKEN, JAEA Collaboration

Motivation

- Intense kaon beams will be available
 - beam intensity is a few X 10⁶ kaons/spill
 - with 30GeV, 9μ A primary proton beams
- Provide us also very intense pion beams
 - roughly X1000 higher than kaons
 - a few X 10⁷ pions/spill with conventional detectors
 - one order higher than experiments in the past
- experiments with intense pion beams
 - available even at the beginning of J-PARC

Hadron Experimental Hall

K1.8 beam line and SKS

Proposing 2 experiments at J-PARC E10 and E22

Production of neutron-rich hypernuclei
 – Double Charge-eXchange (DCX) reaction

• Study on non-mesonic weak decay

– Weak decay of A=4 hypernuclei $({}^{4}_{\Lambda}He, {}^{4}_{\Lambda}H)$

- Precise determination of decay amplitudes

E10: Neutron-rich hypernuclei

Exotic Λ -hypernuclei

Yield estimation: ${}^{9}_{\Lambda}$ He production

- Cross section ~10nb/sr (1/1000 of NCX)
- Major difficulty in this experiment

Parameters	Values	•
π^{-} beam momentum	1.2 GeV/c	-
π^{-} beam intensity	$1 \ge 10^7$ /spill -	High intensity beams
PS acceleration cycle	3.4 s/spill	
⁹ Be target thickness	3.5 g/cm^2	
Reaction cross section	10 nb/sr	
Spectrometer solid angle	0.1 sr 🗲	 Large acceptance
Spectrometer efficiency	0.5	
Analysis efficiency	0.5	

- 310 events in 3 weeks
 - 7 times larger ← KEK-E521 (47 events)
 - Discussion on level structure possible

ΝΝΝ

E22: Non-mesonic weak decay

Mesonic weak decay (MWD) similar with free decay of Λ properties are predictable

I=0 or 1 Non-Mesonic weak decay (NMWD) new decay mode in hypernuclei proton- and neutron-stimulated $\Lambda p \rightarrow np, \quad \Lambda n \rightarrow nn$ properties are not well known yet $^{3}S_{1}/^{1}S_{0}$

Decay amplitudes

- Block and Dalitz approach
 - Initial Λ -N in S-wave (s-shell hypernuclei)
 - Introduced 6 independent amplitudes ($a \sim f$)
 - Initial spin $({}^{1}S_{0} \text{ or } {}^{3}S_{1})$
 - Final isospin (0 or 1)

Status of amplitudes

Estimation of ${}^{4}_{\Lambda}$ He Yield

- Important factor in design of experiment
 - Tiny branching ratio of $\Lambda n \rightarrow nn$ channel
 - − BR($^{4}_{\Lambda}$ He, Λ n \rightarrow nn) ~ 0.01 (?)
 - BR($^{4}_{\Lambda}$ He, $\Lambda p \rightarrow np$) = 0.16±0.02
- Produce ${}^{4}_{\Lambda}$ He as much as possible
 - use ${}^{4}\text{He}(\pi^{+},\text{K}^{+}){}^{4}_{\Lambda}\text{He reaction }(d\sigma/d\Omega \sim 10 \mu \text{b/sr})$
 - high intensity pion beams (K1.8 beam line)
 - large acceptance spectrometer (SKS)
- 19,000 ${}^{4}_{\Lambda}$ He/day \rightarrow 0.5M ${}^{4}_{\Lambda}$ He in 4 weeks

Setup for decay measurement

– Large acceptance and high efficiency for NN – Good PID capability (n/p/ π/γ)

Estimation of yield of NMWD

Parameters	Values	
Acceptance for decay proton	ן 0.25	
Acceptance for decay neutron	0.4	large acceptance
Efficiency for proton	0.8	and high efficiency
Efficiency for neutron	0.3 J	
Branching ratio of $\Lambda p \rightarrow np$ process	0.01	
Branching ratio of $\Lambda n \rightarrow nn$ process	0.1	

 $- 1,300 \text{ } \Lambda p \rightarrow np \text{ and } 75 \text{ } \Lambda n \rightarrow nn \text{ in } 4 \text{ weeks}$ in case of in case of 10% BR 1% BR

- We can achieve 15% statistical error

Summary

- Experiments with intense pion beams – Feasible even very early stage of Day-1
- Two experimental proposals
 - Production of neutron-rich hypernuclei
 - New neutron-rich hypernuclei (${}^{9}_{\Lambda}$ He and ${}^{6}_{\Lambda}$ H)
 - Information on ΛN interaction in n-rich hypernuclei
 - Production of exotic hypernucleus ⁶_ΛH
 - Study on non-mesonic weak decay
 - Detailed study on A=4 hypernuclei (${}^{4}_{\Lambda}$ He and ${}^{4}_{\Lambda}$ H)
 - Precise determination of decay amplitudes

NP@J-PARC, 1-2 June, 2007

Backup Slides

Beam Line Spectrometer

• Basic design

- QQDQQ configuration
 - Point-to-point optics
- Beam line detectors
 - Tracking: BC1, BC2, BC3, BC4
 - Time-of-flight: BH1 and BH2

E05 design		
BC1,BC2	1mm MWPC	
BC3, BC4	3mm DC	
BH1	11 segments	
BH2	5 segments	

BC4 BH2

BC3

BACx2

V

Q13

Q12

$\Lambda N-\Sigma N$ mixing effect

important in neutron-rich Λ -hypernuclei (large isospin)

Structure of ${}^{6}_{\Lambda}$ H hypernucleus

¹H (⁶He, ²H) ⁵H Unbound ⁵H Superheavy hydrogen -1.7 MeV unbound Exist as resonance - "Superheavy Hydrogen" 3 H + 2n + Λ 0.0 4.4 MeV • Bound ${}^{6}_{\Lambda}$ H ? – glue-like role of Λ -2.04 ^₄H + 2n $-B_{\Lambda} = 0.5 \sim 2 \text{ MeV}$? Ve∕ "Hyperheavy Hydrogen" -4.1

EoS of matter in neutron stars

- Strangeness degree of freedom inevitable
 - What kinds of strangeness appear ?
 - Controlled by mass, charge and interaction.

Production of n-rich Λ -hypernuclei

35.0

- KEK-E521 experiment established
 - ${}^{10}B(\pi^-, K^+){}^{10}_{\Lambda}Li$ reaction
 - Clean reaction

g.s. 30.0 K6 beamline @KEK-PS 25.0SKS spectrometer 20.0good energy resolution 15.0 $\Delta B_{\Lambda} = 2.5 MeV (FWHM)$;; 10.0 ~45 events in bound region 5.0do/dΩ~10nb/sr (1/1000 of NCX) 20 40 60 -B₄ [MeV] Increase yield ×10 at J-PARC

80

Structure of ${}^{9}_{\Lambda}$ He hypernucleus

- Expected to be particle stable
 - Core nucleus ⁸He is particle bound
- Practical decay thresholds
 - Naive extrapolation of B_{Λ} tells B_{Λ} ~8MeV
 - \rightarrow 3 MeV more bound than ⁸_AHe+n threshold

Requirement: Resolution (1)

- Clear identification of hypernuclei
 - Binding energy (guess) : ${}^{9}_{\Lambda}$ He ~8MeV, ${}^{6}_{\Lambda}$ H ~3MeV
 - Strong quasi-free Λ -production background

In the case of ${}^{6}_{\Lambda}$ H hypernucleus

Production cross section

-4_{Λ} He(g.s., 0+) production – estimation with DWIA by T. Harada

Energy resolution

– K1.8 beam line + SKS \rightarrow excellent resolution

- Liquid ⁴He 2 g/cm² $\rightarrow \Delta Ex \sim 2 \text{ MeV}$
- BE(${}^{4}_{\Lambda}$ He) = 2.42 \pm 0.04 MeV

– Separation from $QF_{x10}^{2}\Lambda$ production essential

Estimation of ${}^{4}_{\Lambda}$ He Yield

– use ${}^{4}\text{He}(\pi^{+},\text{K}^{+}){}^{4}_{\Lambda}\text{He reaction}$

Parameters	Values	-
π^+ beam momentum	1.1 GeV/c	-
π^+ beam intensity	1 x 10 ⁷ /spill	High intensity beam
PS acceleration cycle	3.4 s/spill	
⁴ He target thickness	2 g/cm^2	
Reaction cross section	10 µb/sr	
Spectrometer solid angle	0.1 sr 🗲	— Large acceptance
Spectrometer efficiency	0.5	-
Analysis efficiency	0.5	

- 19,000 ${}^4_{\Lambda}$ He/day \rightarrow 500,000 ${}^4_{\Lambda}$ He in 4 weeks

Detector setup for decay

