E10 status

Atsushi Sakaguchi (Osaka University) for the E10 Collaboration

Study of Λ hypernuclei and ΛN interaction

• Λ hypernucleus

- System made of a Λ hyperon and a nucleus(A)
 - ΛN interaction strong enough to form a bound state
- Binding energies and structures of Λ hypernuclei give us the information of the ΛN interaction
- How far can we extend the hypernucler chart?
 - Importance of "glue-like role" of Λ hyperon
 - ΛN interaction also stabilize host nucleus
- How about ΛNN 3-body force?
 - Prediction of a strong Λ NN 3-body force
 - Force comes from $\Lambda N-\Sigma N$ mixing process

Aims of E10 experiment

- E10 is proposing study of neutron-rich Λ hypernuclei
- Aim 1: Λ hypernuclei close to the neutron drip-line
 - Highly neutron-rich Λ hypernuclei
 - ${}^{6}_{\Lambda}$ H (1p, 4n and 1 Λ), ${}^{9}_{\Lambda}$ He (2p, 6n and 1 Λ)
 - "glue-like role" of Λ hyperon is critical in such loosely bound hypernuclei
- Aim 2: ΛN interaction at the extreme condition
 - Effect of $\Lambda N-\Sigma N$ mixing or ΛNN 3-body force may be observed in structures of neutron-rich Λ hypernuclei
 - Neutron-rich Λ hypernuclei are good laboratories to study these effects

Production of neutron-rich Λ hypernuclei

- How to produce?
 - Double Charge-eXchange (DCX) reaction

$^{6}{}_{\Lambda}$ H hypernucleus and Λ N interaction

- Possible contribution due to strong ΛN - ΣN mixing
- FINUDA reported bound states of ${}^{6}_{\Lambda}$ H

${}^{6}_{\Lambda}$ H hypernucleus and Λ N interaction (2)

Theoretical estimations compared with FINUDA data

• Sensitive to ΛN interaction and also properties of ⁵H

The 17th J-PARC PAC at KEK, 25 September 2013

Setup of E10 experiment

- Done at K1.8 beam line
 - 1.2 GeV/c pion beams
 - dp/p ~ 3.3x10⁻⁴
- SKS spectrometer
 - 0.9 GeV/c scattered K⁺
 - dp/p ~ 10⁻³
 - dΩ ~ 100 msr
- Target (~3.5 g/cm²)
 - ⁶Li (95.54% enriched)

MS2

Q9

• C and (CH₂)_n

Summary of 2012 December beamtime

Beamtime summary (from 15/Dec to 27/Dec)

Summary of 2013 January beamtime

Beamtime summary (from 8/Jan to 16/Jan)

Summary of E10 beamtime

Number of pion beams on target in production runs

E10 proposal and actual run conditions

- High intensity pion beams could be used
- Production runs were performed efficiently

Results of calibration runs

- Calibration of momenta of beams and scatt. particles
 - Σ^{-} production, 1197.449 GeV/c² (missing-mass calib.)
 - Σ^+ production, 1189.37 GeV/c² (missing-mass calib.)

Results of calibration runs (2)

- Momentum calibrations and resolution estimation
 - Beam through runs (K1.8-SKS mom. mismatch)
 - ${}^{12}_{\Lambda}$ C production (missing-mass resolution)

Results of production runs

- PID of scattered kaons
 - Momentum(SKS) + time of flight \rightarrow Mass squared (m²)
 - Momentum dependent selection of Kaon (2-3σ cuts)
 ⁶Li(π⁻,h⁺)X
 ⁶Li(π⁻,h⁺)X

Results of production runs (2)

- Missing-mass spectra of the ⁶Li(π^- ,K⁺)X reaction
 - Current precision of missing-mass is 1-2 MeV/c² level
 - No significant peak structure in the threshold region
 - Cross section looks smaller than we assumed (< 1nb/sr)
 - Studies are in progress to improve the sensitivity

Possible discussion on bound states

- Possible bound states are ${}^{6}_{\Lambda}$ H(0⁺) and ${}^{6}_{\Lambda}$ H(1⁺)
- Transition from ⁶Li(1⁺) to ${}^{6}_{\Lambda}H_{g.s.}(0^{+})$ need spin-flip amp.
- 3 possible scenarios

 Theoretical estimation of production cross sections is necessary for more quantitative discussions

Summary

- 2012-Dec./2013-Jan. beamtimes done successfully
 - Run at high beam intensity 10M-12M/spill
 - Measured ⁶Li(π^- ,K⁺)X reaction as phase-1 of E10
 - 1.65 T pion beams on target (55% of proposal)
- All calibration runs were also done successfully
 - Σ^{\pm} and $^{\mathbf{12}}{}_{\Lambda}\mathbf{C}$ production and beam through runs
 - Current precision of missing-mass scale is 1-2MeV/c²
 - Missing-mass resolution is 3.0 MeV/c² (FWHM)
- Analyses of ${}^{6}_{\Lambda}$ H production data are in progress
 - No significant peak structure in the threshold region
 - Studies are in progress to improve the sensitivity