Study of Λ hypernuclei close
to neutron drip-lineAtsushi Sakaguchi (Osaka University)
for the J-PARC E10 Collaboration

Study of Λ hypernuclei and ΛN interaction Λ hypernucleus

- System made of a Λ hyperon and a nucleus(A)
 - AN interaction strong enough to form a bound state
- Measurement of the binding energies and the nuclear structure provide us the information of ΛN interaction
- How far can we extend the hypernucler chart?
 - Importance of "glue-like role" of Λ hyperon
 - AN interaction also stabilize host nucleus
- How about ΛNN 3-body force?
 - Prediction of a strong ANN 3-body force
 - Force comes from $\Lambda N-\Sigma N$ mixing process

Ν

$\Lambda N-\Sigma N$ Mixing in Λ Hypernuclei

• Strong mixing of ΛN and ΣN pairs

• B.F. Gibson et al. PR C6 (1972) 741

$\Lambda N-\Sigma N$ mixing and neutron-rich ${}^{6}_{\Lambda}H$

• Possible observation of mixing effect in ${}^{6}_{\Lambda}$ H structure

NUFRA2013 at Kemer, Antalya, Turkey, 4 October 2013

${}^{6}_{\Lambda}$ H hypernucleus and Λ N interaction

- Recent FINUDA data and theoretical estimations
- Sensitive to ΛN interaction and also properties of ⁵H

Aims of E10 experiment

- E10 proposed study of "neutron-rich Λ hypernuclei"
- Aim 1: Λ hypernuclei close to the neutron drip-line
 - Highly neutron-rich Λ hypernuclei
 - ${}^{6}_{\Lambda}$ H (1p, 4n and 1 Λ), ${}^{9}_{\Lambda}$ He (2p, 6n and 1 Λ)
 - "glue-like role" of Λ hyperon is critical in such loosely bound hypernuclei
- Aim 2: ΛN interaction at the extreme condition
 - Effect of $\Lambda N-\Sigma N$ mixing or ΛNN 3-body force may be observed in structures of neutron-rich hypernuclei
 - Neutron-rich Λ hypernuclei are good laboratories to study these effects

Production of neutron-rich Λ hypernuclei

• How to produce?

L. Majling, Nucl. Phys. A585 (1995) 211c

Double Charge-eXchange (DCX) reaction

J-PARC E10 Experiment

- J-PARC 50GeV Proton-Synchrotron facility
- K1.8 beam line in hadron-hall K1.8 beam line spectrometer north area of ī hadron-hall ¥IIII SKS exp. target <u>____</u> ESS2 **D**4 **D3 D4** primary target ESS1 K1.8 beam line 30GeV D1,D2 p

NUFRA2013 at Kemer, Antalya, Turkey, 4 October 2013

Setup of E10 experiment

- K1.8 beam line spectrometer
 - 1.2 GeV/c pion beams
 - Beam trackers
 - Scintillating fiber tracker: BFT
 - Drift chambers (3mm wire pitch): BC3, BC4

MS2

Q9

- $dp/p \sim 3.3 x 10^{-4}$
- Trigger and TOF measurement
 - Beam hodoscopes: BH1, BH2
- Key issue in E10 experiment
 - High rate beams
 - 10M-12M/spill

BFT (beam fiber tracker)

- 1mm \$\phi\$ scintillating fibers
 - x and x' layers staggered by 0.5mm
 - $160 \times 2 = 320$ fibers
- Read out
 - MPPC+EASIROC
 - Flexible and easy to handle

BFT

1mm¢ fibers

NUFRA2013 at Kemer, Antalya, Turkey, 4 October 2013

Setup of E10 experiment

- SKS spectrometer
 - 0.9 GeV/c scattered K⁺
 - Tracking of scattered particles
 - Scintillating fiber tracker: SFT
 - Drift chambers: SDC2, SDC3, SDC4
 - $dp/p \sim 10^{-3}$, $d\Omega \sim 100 \text{ msr}$
 - PID made by BH2-TOF time-of-flight
- Connection of beam π and scattered K⁺ tracks
 - SSD was newly installed to improve vertex resolution

Q10

- Target (~3.5 g/cm²)
 - ⁶Li (95.54% enriched), C and $(CH_2)_n$

K1.8 beam line spectrometer

SFT and SSD

- SFT (Fiber Tracker for Scattered particle tracking)
 - xx' (ϕ 1mm), u and v (ϕ 0.5mm, \pm 45 deg. tilt) planes
 - MPPC+EASIROC readout (same as BFT)
- SSD (Silicon Strip Detector)
 - x and y planes (80 µm pitch, single side readout)

E10 proposed run plan and run conditions

- Used high intensity pion beams as proposed
- Production runs were done (55% of proposed)

Calibration and diagnostic runs

- Momentum calibration of beam and scattered particle
 - Σ^- and Σ^+ production runs (missing-mass calibration)
 - Cross sections are consistent with existing data

Calibration and diagnostic runs (2)

- Beam through runs (K1.8-SKS mom. mismatch)
- ${}^{12}_{\Lambda}$ C production (check missing-mass resolution)
 - Cross section is consistent with existing data

Results of production runs

- PID of scattered K⁺ is very important
 - No physical background. Background from miss-PID.
 - Current background level ~ 1/100
 - Momentum dependent selection of Kaon (2-3 σ cuts) ⁶Li(π^- ,h⁺)X ⁶Li(π^- ,h⁺)X

Results of production runs (2)

- Missing-mass spectrum of the ${}^{6}\text{Li}(\pi^{-}, K^{+})X$ reaction
 - Current precision of missing-mass is 1 MeV/c² level
 - Tentative angle cut applied 2-14 degrees
 - Same as KEK-E521 and detector acceptance well known

Results of production runs (3)

- No significant peak structure in the threshold region
 - Cross section smaller (< 1 nb/sr) than assumed (10 nb/sr)
- ${}^{6}_{\Lambda}$ H structure and reaction mechanism are not that simple ackground level ${}^{35}_{30}$ ${}^{6}Li(\pi^-,K^+)X$ ${}^{6}_{LAB}=2-14$ deg.

Background level 0.1-0.3 event/(MeV/c²)

Missing-mass resolution 3.0 MeV/c²

0.3-0.9 event/state 1 event ~ 0.1nb/sr

Discussion on structure of ${}^{6}_{\Lambda}H$

- Possible low-lying states are ${}^{6}_{\Lambda}H_{g.s.}(0^{+})$ and ${}^{6}_{\Lambda}H(1^{+})$
- ${}^{6}\text{Li}(1^{+}) \rightarrow {}^{6}_{\Lambda}\text{H}_{g.s.}(0^{+})$ needs spin-flip amp. but small

- Trying to improve sensitivity to see small yield
- Need theoretical input of production cross sections

SKS acceptance map in E10

Acceptance map and current analysis cut

Acceptance of E10

Summary

- Phase-1 beamtime J-PARC E10
 - Done in December 2012 and January 2013
 - Run at high beam intensity as proposed: 10M-12M/spill
 - 1.65 T pion beams on target (55% of proposal)
- All calibration runs were done (Σ^{\pm} and ${}^{12}_{\Lambda}C$)
 - Current precision of missing-mass scale is $\sim 1 \text{ MeV/c}^2$
 - Missing-mass resolution is 3.0 MeV/c² (FWHM)
- Analyses of ${}^{6}_{\Lambda}$ H production data are in progress
 - Production cross section (θ_{LAB} =2-14 deg.) < 1 nb/sr
 - Discussed possible scenarios
 - Studies are in progress to improve the sensitivity