P10-2: Exclusive Study on the ΛN Weak Interaction in A=4 Λ-Hypernuclei (update from P10)

S. Ajimura (Osaka Univ.) Osaka-U, KEK, OsakaEC-U, RIKEN, Seoul-U, JAEA, Torino Spokespersons: A. Sakaguch, S. Aiimura

Spokespersons: A. Sakaguch, S. Ajimura (Osaka Univ.)

Subjects of this proposal

- Properties of ΛN weak interaction
 - study on non-mesonic weak decay (NMWD) in hypernuclei $\rightarrow \Lambda N$ weak interaction

 - spin/isospin structure
 parity information
 determination of partial decay amplitudes
 - measurement of np-ratio (Γ_n/Γ_p) of ${}^4_\Lambda$ He

 $\Lambda n \rightarrow nn, \Lambda p \rightarrow np$

- Studies toward test of " $\Delta I = 1/2$ rule"
 - " $\Delta I = 1/2$ rule" valid or not in NMWD
 - Study on A=4 hypernuclei (${}^{4}_{\Lambda}$ He and ${}^{4}_{\Lambda}$ H)
 - 1st step for the study

Weak decays in Λ -Hypernuclei

Mesonic weak decay (MWD) similar with free Λ decay spin/isospin structure well known

I=0 or 1 Non-Mesonic weak decay (NMWD) new decay modes $\Lambda p \rightarrow np, \Lambda n \rightarrow nn$ spin/isospin structure: unknown

Status of NMWD studies

- Old puzzle solved recently
 - np-ratio $(\Gamma_{\Lambda n \to nn} / \Gamma_{\Lambda p \to pn} \equiv \Gamma_n / \Gamma_p)$ inconsistent $\Gamma_n / \Gamma_p \ge 1 (\text{Exp.}) \iff \Gamma_n / \Gamma_p \approx 0 \text{ (Theory)}$
 - Experimental and theoretical improvements

$$\Gamma_n / \Gamma_p \approx 0.5$$
 (Exp. and Theory)

 – (Exp.) Back-to-back coincidence for final two nucleons (E462/508)

• NMWD of 4-, 5-body hypernuclei

– allowed initial ΛN states

	parity	isospin	amplitude	final	initial
	no	1	а	¹ S ₀	¹ S ₀
$S^{-1}S_{0}(I = I)$	yes	1	b	³ P ₀	
	no	0	С	¹ S ₁	³ S ₁
$\sum_{i=1}^{3} S_{1}(I = 0)$	no	0	d	³ D ₁	
	yes	0	е	¹ P ₁	
$-{}^{3}S_{1}(I = 1)$	yes	1	f	³ P ₁	
~ 1 (-	ial S state	uming init	assi		

Status of amplitude determination

Current status

constraint from ${}^{5}_{\Lambda}$ He data other constraints are loose

Our prospects

new constraint from ${}^{4}_{\Lambda}$ He np-ratio better than 15% error

Production of ${}^{4}_{\Lambda}$ He

Energy resolution

- K1.8 bemline + SKS \rightarrow excellent resolution

- Liquid ⁴He 2 g/cm² $\rightarrow \Delta Ex \sim 2 \text{ MeV}$
- $BE({}^{4}_{\Lambda}He) = 2.42 \pm 0.04 \text{ MeV}$
- Separation from QF Λ production essential

Decay arm system

- Large acceptance and high efficiency for NN

Yield estimation

Parameters	Values			
π^+ beam momentum	1.1 GeV/c			
π^+ beam intensity	1×10^7 /spill	high beam intensity		
PS acceleration cycle	3.4 sec/spill	3		
⁴ He target thickness	$2 g/cm^2$			
Reaction cross section	$10 \ \mu \mathrm{b/sr}$			
Spectrometer solid angle	0.1 sr 🗲	— large acceptance		
Spectrometer efficiency	0.5	9		
Analysis efficiency	0.5			
Decay counter acceptance for proton	0.25			
Decay counter acceptance for neutron	0.4	large acceptance		
Efficiency for decay protons	0.8	and high efficiency		
Efficiency for decay neutrons	0.3	and high emolency		
Branching ratio of $\Lambda n \rightarrow nn$ process	0.01			
Branching ratio of $\Lambda p \rightarrow np$ process	0.1^{*}			

- 19,000 ${}^4_\Lambda\text{He}/\text{day}$ \rightarrow 500,000 ${}^4_\Lambda\text{He}$ in 4 weeks
- 1,300 $\Lambda p \rightarrow np$ and 75 $\Lambda n \rightarrow nn$ in 4 weeks

in case of 1% BR

Background estimation

- Background sources
 - QF Λ -production ($\Lambda \rightarrow p + \pi^{-}, \pi^{-} + A \rightarrow nnX$)
 - cut in Ex spectrum
 - Mesonic weak decay of hypernuclei
 - ${}^{4}_{\Lambda}\text{He} \rightarrow {}^{3}\text{He} + p + \pi^{-}, \pi^{-} + A \rightarrow nnX$
 - $\Gamma_{\pi^-} \approx 0.3 \ \Gamma \iff \Gamma_n \approx 0.01 \ \Gamma$
- Reduction of background
 - veto: no π track in CDC
 - less material at target
 - LHe target \leq 2 g/cm²
 - range(π -) \leq 5 g/cm²

Background MC simulation

Simulation of worst case

- 1/5 of π - stop in material around target

 $1/5 \Gamma \pi$ - ~ 0.06 \Leftrightarrow Γn ~ 0.01

- GEANT4 base simulation

Time schedule

Ready in 2009Collaboration with E05 and E15

Summary of proposal

- We propose to measure the nonmesonic weak decay of ${}^4_\Lambda$ He.
 - select initial spin state $({}^{1}S_{0}/{}^{3}S_{1})$
 - first step to check the validity of $\Delta I=1/2$ rule
- 1300 np-decay and 75 nn-decay are expected in 4 weeks if B.R.(nn)=1%.
- Main background, π^- absorption, will not affect the measurement
- Experiment will be ready in FY 2009.