Technical Issues for J-PARC E10 Experiment

Atsushi Sakaguchi (Osaka University)

Subject of E10

- Production of neutron-rich hypernuclei
 - Hypernuclei close to neutron-drip line

- ΛN interaction in n-rich environment
 - $\Lambda N-\Sigma N$ mixing effect

- Impact to other field of science
 - Strangeness degree in neutron star core
 - Mass, charge, interaction, ...
 - EOS of neutron stars

Requirement: Yield

- Yield of hypernuclei
 - Cross section of DCX is small
 - NCX (Δz=0): (K⁻,π⁻), (π⁺,K⁺) reactions
 - DCX (Δz=2): (K⁻,π⁺), (π⁻,K⁺) reactions

cross section of hypernuclei production (@ 0°)

	typical cross section			
process	(π^+, K^+)	(π^{-}, K^{+})	(K^-,π^-)	(K^-,π^+)
production of hypernuclei	$8 \ \mu b/sr$	10 nb/sr	$200 \ \mu b$	n.a.
elementary process	$0.4 \mathrm{~mb/sr}$	_	4 mb/sr	_

- About 1/1000 of NCX reaction

• Yield estimation

$$Yield ({}^{9}_{\Lambda} \text{He}) = N_{Beam} \times \frac{N_{Target}}{9} \times N_A \times \frac{d\sigma}{d\Omega} \times \Omega_{SP} \times \varepsilon_{SP} \times \varepsilon_{Anal} \times \frac{Time}{T_{Cycle}} \quad (1)$$

Parameters	Values	Notation in Eq	q.(1)
π^- beam momentum	1.20 GeV/c		
π^- beam intensity	1×10^7 /spill	N_{Beam}	← K1.8
PS acceleration cycle	$3.4 \mathrm{sec}$	T_{Cycle}	
⁹ Be target thickness	$3.5 g/cm^2$	N_{Target}	
Reaction cross section	10 nb/sr	$d\sigma/d\Omega$	
Spectrometer solid angle	$0.1 \mathrm{\ sr}$	Ω_{SP}	← SKS
Spectrometer efficiency	0.5	ε_{SP}	
Analysis efficiency	0.5	ε_{Anal}	

3 weeks of beamtime \rightarrow ~300 events

 \leftrightarrow 47 events (KEK-PS E521)

Requirement: Resolution (1)

- Clear identification of hypernuclei
 - Binding energy (guess) : ${}^{9}_{\Lambda}$ He ~8MeV, ${}^{6}_{\Lambda}$ H ~3MeV
 - Strong quasi-free Λ -production background

In the case of ${}^{6}_{\Lambda}H$ hypernucleus

K1.8 Beam Line

- Beam line fits for hypernuclear studies
 - Particle separation is good (IF, ES1, ES2)
 - Excellent momentum resolution $\Delta p/p=1.4/10000$

Beam Line Spectrometer

- Basic design
 - QQDQQ configuration
 - Point-to-point optics
 - Beam line detectors
 - Tracking: BC1, BC2, BC3, BC4
 - Time-of-flight: BH1 and BH2

E05 design		
BC1,BC2	1mm MWPC	
BC3, BC4	3mm DC	
BH1	11 segments	
BH2	5 segments	

BH2

BC4

BC3

BACx2

V

Q13

Q12

Capability of BC operation at high rate

hit rate estimation 10^7 pions on target $\rightarrow \sim 400k$ hits/mm (@ BC1, BC4)

Requirement for E10 experiment

- Longer spill length > 2 s (max 3 s @ 30GeV)

12

BC4 replacement ~1mm wire-spacing

spin length hecessary to keep be rate < 200k Hz/wite				
	maximum hit rate			
$\operatorname{chambers}$	wire spacing	$\mathrm{hit}/\mathrm{mm}/10^7\pi$	$hit/wire/10^7\pi$	spill length
BC1	$1 \mathrm{mm}$	400k	400k	2.00 s
BC2	$1 \mathrm{mm}$	140k	140k	0.70 s
BC3	$3 \mathrm{mm}$	150k	450k	$2.25 \ {\rm s}$
BC4	$3 \text{ mm} \leftarrow$	E05 330k	990k	$4.95 \mathrm{~s}$
(BC4)	(1 mm) 🔶	E10 330k	330k	$1.65 \ {\rm s}$

shill length necessary to keep BC rate < 200k Hz/wire

- Plans of BC4 update
 - Low cost option: exchange BC2 and BC4
 BC2 (1mm MWPC) ↔ BC4 (3mm DC)
 - Option 2: build new BC4
 - BC4 (3mm DC) \rightarrow new BC4 (1mm MWPC)
 - Option 3: develop new type of detector
 - Detector for high rate operation
 - GEM-base chamber R&D at Osaka-EC Univ.
 - Sci-Fi (material, radiation damage, cost ??)

- Beam line hodoscopes (BH1, BH2)
 - E05 design (K1.8 standard ?)
 - BH1: 11 segments
 - BH2: 5 segments
 - BH module performance (study @ KEK-PS)
 - Dynode boosted PMT
 - Timing resolution ~40 ps (rms)
 - Operation up to a few x 10⁶ hits/s is possible
 - Update for E10
 - BH1 is OK also for E10
 - Need BH2 update (5 \rightarrow 11 segments ??)

SKS Spectrometer

- spectrometer fits for hypernuclear studies
 - Large angular acceptance ~100 msr

– Excellent momentum resolution $\Delta p/p \sim 1/1000$

Study by missing mass spectroscopy

Overall energy resolution

- Determined by target thickness

dominated by SKS mom. resolution energy loss straggling

require 2.5MeV (FWHM)

 \rightarrow 3.5 g/cm² target

SKS intrinsic	1.5
E-loss difference	0.4
E-loss straggling	2.0
multiple scattering	0.04

Energy Calibration

- Necessity of absolute energy calibration
 - Precise calibration necessary < 0.3MeV
- Calibration methods
 - Calibration by ${}^{12}C(\pi^+, K^+){}^{12}{}_{\Lambda}C$ reaction
 - B_{Λ}(¹²_{Λ}C) = 10.76 \pm 0.19 is well known
 - Polarity change of K1.8: $\pi^+ \rightarrow \pi^-$
 - Distributions of $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ are similar
 - Estimation of polarity change effect
 - Compare $p(\pi^+, K^+)\Sigma^+$ and $p(\pi^-, K^+)\Sigma^-$
 - $m(\Sigma^{-}) m(\Sigma^{+}) = 8.08 \pm 0.08$
 - K1.8 and SKS magnetic field monitor
 - with hole-probe and/or NMR-probe

establish during commissioning

- Consideration on beam hit rates
 - DC1 and DC2 are close to target (final focus)
 - Beam sizes at DC are small

- Similar rate with BC1 and BC4
- Need update of DC1 and DC2
 - DC1, 2 (3mm DC) \rightarrow new-DC1, 2 (1mm MWPC)

Safety Issue (1)

Radiation protection

A few x 10⁷ particles/spill more stable than K-beam

Tochka structure

K1.8 shield additional shield wall of building

Safety Issue (2)

- Toxic and flammable materials
 - Be target
 - Toxic
 - Handling is not difficult (metallic Be)
 - Li target
 - Flammable
 - Careful handling (air tight seal, Ar gas flow)
 - Experience at KEK-PS K6
 - Chamber gas (ethane, iso-butane)
 - Flammable
 - Exhaust pipes to outside, gas leak detectors

Safety Issue (3)

- Cryogenic system of SKS
 - System will be simplified

COLD BOX 300W (4.5K)

Cost for Preparation

- Basic equipments will be ready
 K1.8 beam line and SKS system
- Upgrade of several detectors for E10 – BH2, DC1, DC2 (, BC4)

Table 6: Cost estimation for the E10 experiment.

item	unit cost (JPY)	units	total cost (JPY)
DC1, DC2 update	5,000,000	2	10,000,000
electronics for chamber	8,000,000	2	16,000,000
BH2 update	2,000,000	1	2,000,000
total			28,000,000

Status of Budget

- Basically supported by Grant-In-Aid
 - Sharing with E22 experiment necessary
 - Covers most of detector upgrades

Table 7: Profile of budget from Grant-In-Aid Priority Area.

	budget (JPY)	fiscal year
	3,600,000	2005
	6,500,000	2006
	47,300,000	2007
79,000,000	29,000,000	2008
	2,700,000	2009
	89,100,000	total

Time Schedule

- To be ready in FY2009

Collaboration

- List of staff members only
- Collaboration with other K1.8 user groups

Table 8: List of collaboration.

Institution	Member
Osaka University	Atsushi Sakaguchi [*]
	Shuhei Ajimura
	Tadafumi Kishimoto
Osaka Electro-Communication University	Tomokazu Fukuda*
	Yutaka Mizoi
KEK	Toshiyuki Takahashi
	Hiroyuki Noumi
JAEA	Pranab Kumar Saha
Seoul National University, Korea	Hyoung Chan Bhang
Università di Torino, Italy	Luigi Busso
INFN, Italy	Diego Faso
INAF-IFSI, Italy	Ombretta Morra