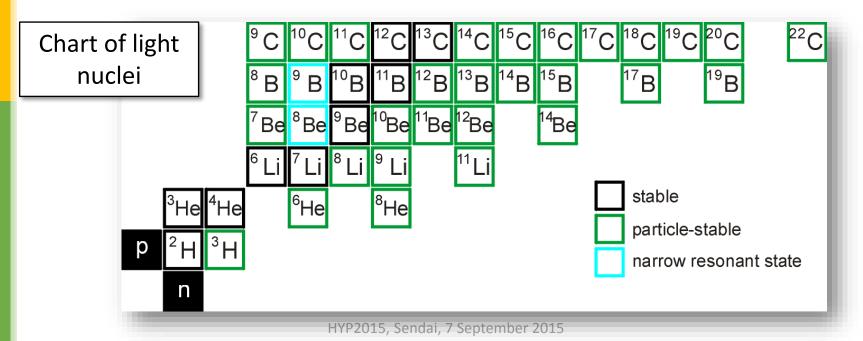
Neutron-rich Λ hypernuclei

Atsushi Sakaguchi (Osaka University)

Contents

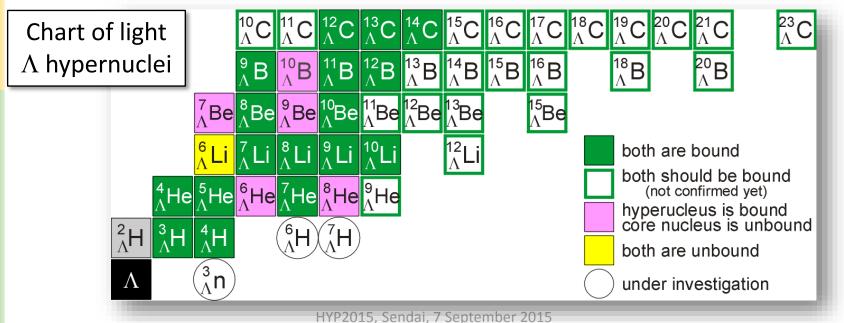

- Neutron-rich Λ hypernuclei close to drip-line
- •Why neutron-rich Λ hypernuclei?
 - Glue-like role of Λ may extend boundary of stability
 - How large ΛN - ΣN mixing in neutron-rich Λ hypernuclei?
- Promising tools to access n-rich Λ hypernuclei
 - Charge-exchange reaction (SCX and DCX) and HI collisions
- Recent studies by using DCX reaction
 - KEK-E521, FINUDA, J-PARC E10
 - Possible interpretations of recent results
- Future plans at J-PARC

Summary

Why neutron-rich Λ hypernuclei?

Extensive studies on neutron-rich nuclei

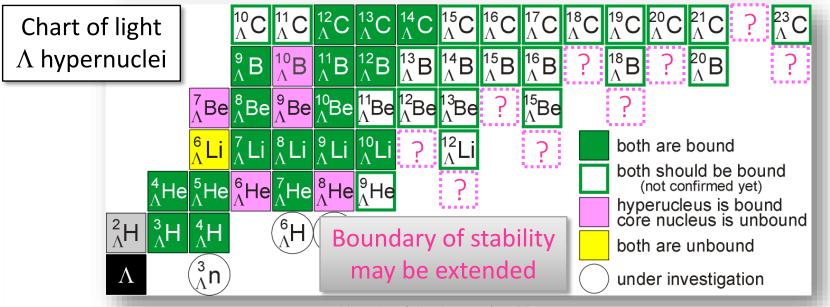
- Nuclear chart has wide spreading in the neutron-rich side
 - Simple shell model is not enough to understand wide range of nuclear chart
- Studies of these neutron-rich nuclei give us detailed information of nuclear interaction



3

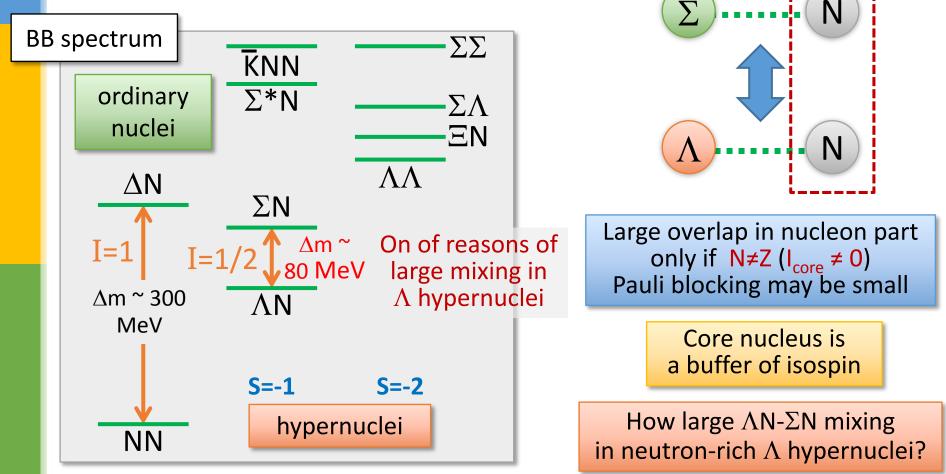
Why neutron-rich Λ hypernuclei?

Chart of Λ hypernuclei


- Particle-stable core nuclei guarantee stable Λ hypernuclei
 - Still there are many unobserved Λ hypernuclei
- A-hyperon may reinforce the hypernuclear binding
 - Glue-like role of Λ -hyperon: also particle-unstable core nuclei may produce stable Λ hypernuclei

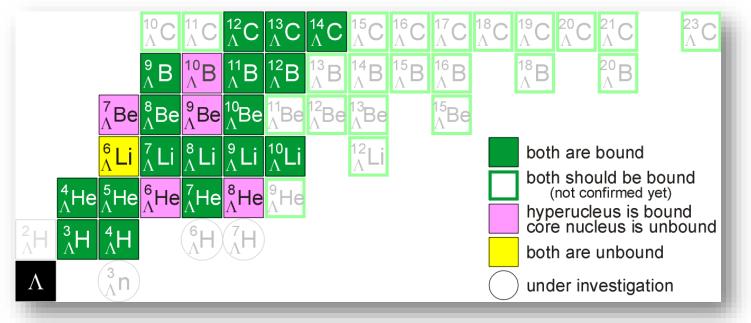
Why neutron-rich Λ hypernuclei?

Chart of Λ hypernuclei


- Particle-stable core nuclei guarantee stable Λ hypernuclei
 - Still there are many unobserved Λ hypernuclei
- A-hyperon may reinforce the hypernuclear binding
 - Glue-like role of Λ -hyperon: also particle-unstable core nuclei may produce stable Λ hypernuclei

HYP2015, Sendai, 7 September 2015

$\Lambda\text{N-}\Sigma\text{N}$ mixing in n-rich Λ hypernuclei


- Large contribution of $\Lambda N-\Sigma N$ mixing is expected
 - B.F. Gibson et al. PR C6 (1972) 741

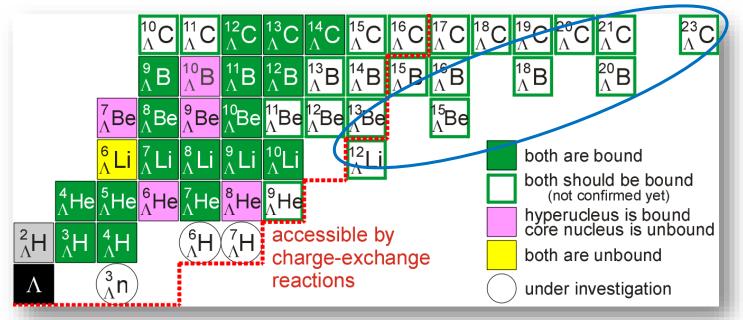
Tools to access n-rich Λ hypernuclei

Old emulsion experiments with stopped-K⁻ beams

Hypernuclear species were limited and yield was low

HYP2015, Sendai, 7 September 2015

Tools to access n-rich Λ hypernuclei


Old emulsion experiments with stopped-K⁻ beams

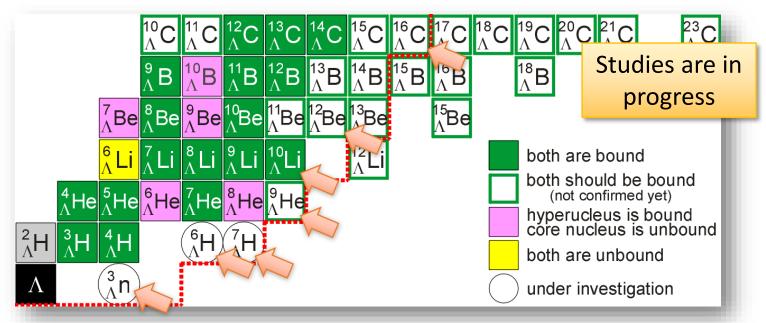
- Hypernuclear species were limited and yield was low
- Charge-exchange reactions
 - SCX: (e,e'K⁺), (K⁻, π⁰) DCX: (π⁻,K⁺), (K⁻,π⁺)

L. Majling, Nucl. Phys. A585 (1995) 211c

SCX: Single Charge-eXchange DCX: Double Charge-eXchange

Relativistic heavy-ion collisions

Tools to access n-rich Λ hypernuclei


Old emulsion experiments with stopped-K- beams

- Hypernuclear species were limited and yield was low
- Charge-exchange reactions
 - SCX: (e,e'K⁺), (K⁻, π⁰) DCX: (π⁻,K⁺), (K⁻,π⁺)

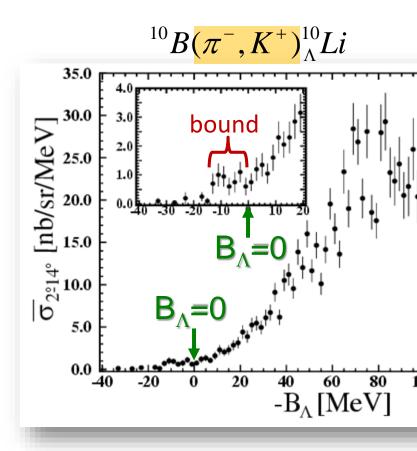
L. Majling, Nucl. Phys. A585 (1995) 211c

SCX: Single Charge-eXchange DCX: Double Charge-eXchange

Relativistic heavy-ion collisions

HYP2015, Sendai, 7 September 2015

Study by using DCX reaction: ${}^{10}_{\Lambda}\text{Li}$


KEK E521: P.K. Saha et al. PRL 94 (2005) 052501

- Study of the ${}^{10}B(\pi^-, K^+)$ reaction
 - Successfully produced ¹⁰ Li
 - Almost background free
- Promising production method
- Tiny production cross section

$$\frac{d\sigma}{d\Omega}(\text{DCX},^{10}_{\Lambda}\text{Li}) \approx 10\,\text{nb/sr}$$

$$\frac{d\sigma}{d\Omega}$$
(DCX) $\left/\frac{d\sigma}{d\Omega}$ (NCX) $\approx 10^{-3}$

DCX: (π^-, K^+) NCX: (π^+, K^+) for ${}^{12}_{\Lambda}C$

High-intensity pion beams are necessary

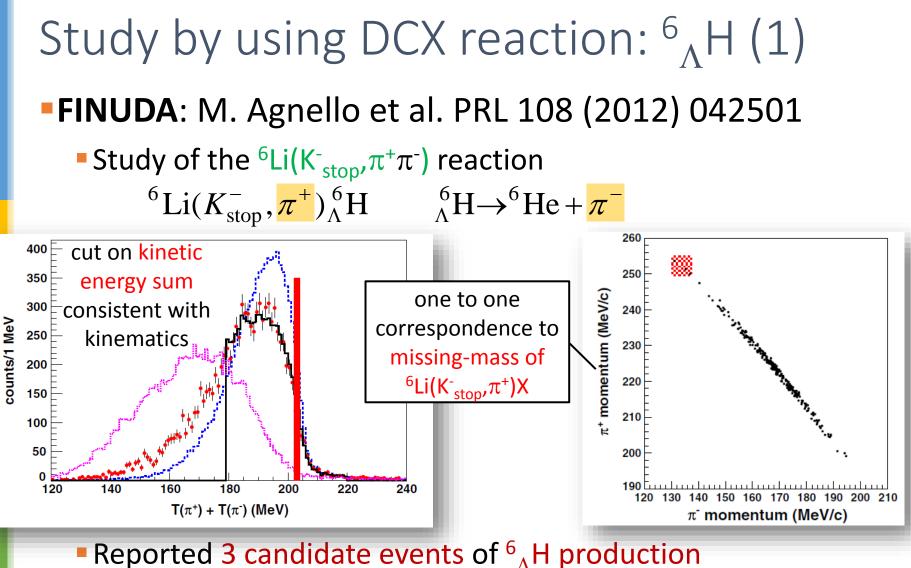
Reaction mechanism of DCX reaction

• The (π^{-}, K^{+}) reaction basically has two-step nature

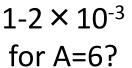
2 nucleons participate in the elementary process

$$\pi^{-}p p \to K^{+}\Lambda n$$

- Two possible reaction mechanisms
 - Simple two-step process

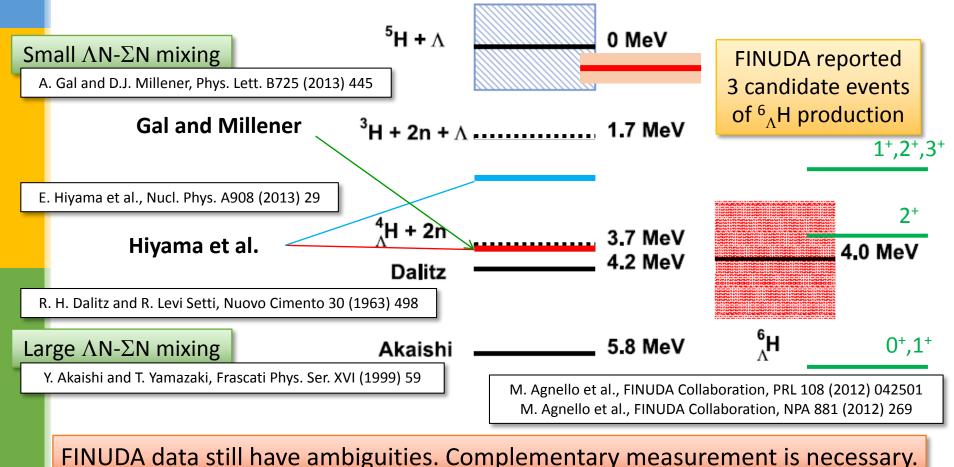

Sequential single charge-exchange reactions

 $\pi^{-}pp \to K^{0}\Lambda p \to K^{+}\Lambda n, \quad \pi^{-}pp \to \pi^{0}np \to K^{+}n\Lambda$


• "Single-step" process by $\Lambda N-\Sigma N$ mixing

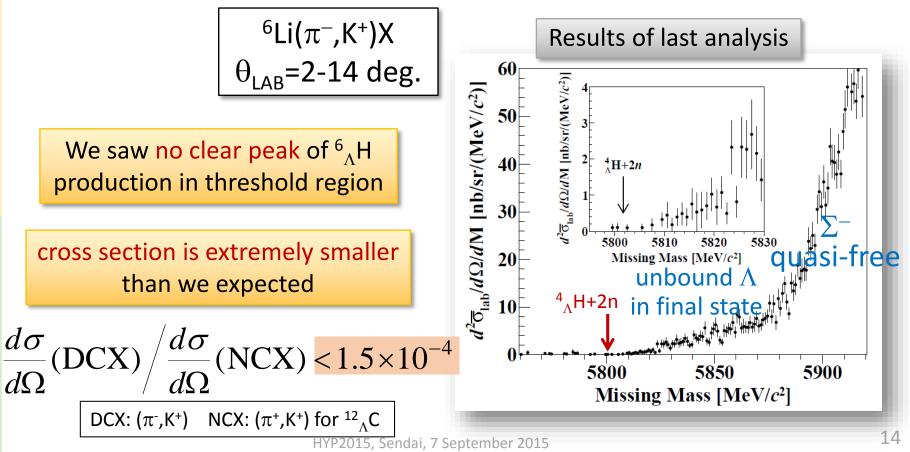
 $\pi^- pp \to K^+ \Sigma^- p \Leftrightarrow K^+ \Lambda n$

ΛN-ΣN mixing appears also in reaction mechanism
KEK-E521 data favors "single-step" at least for ¹⁰_ΛLi



Reported 3 candidate events of ${}^{6}_{\Lambda}$ H production BR(DCX, {}^{6}_{\Lambda}H)/BR(NCX, {}^{12}_{\Lambda}C) \approx 6 \times 10^{-3} BR(DCX, {}^{6}_{\Lambda}H)/BR(NCX, {}^{4}_{\Lambda}He) \approx 3 \times 10^{-4} HYP2015, Sendai, 7 September 2015

Possible level structure of ${}^{6}_{\Lambda}$ H


- FINUDA reported 3 candidate events of ⁶ H production
- Sensitive to ΛN interaction and also properties of ⁵H

Study by using DCX reaction: ${}^{6}_{\Lambda}$ H (2)

J-PARC-E10: H. Sugimura et al., PLB 729 (2014) 39

- Results of updated analysis will be presented by R. Honda
- Missing-mass spectrum of the ${}^{6}\text{Li}(\pi^{-},\text{K}^{+})$ reaction

Possible interpretations of ${}^{6}_{\Lambda}$ H results

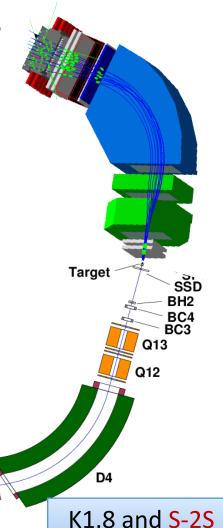
Reaction mechanism?

- Transition from ⁶Li(1⁺) to ${}^{6}_{\Lambda}$ H(0⁺) needs spin-flip amplitude
 - (K⁻_{stop}, π^+) reaction also needs spin-flip to populate 0⁺
 - FINUDA interpretation was population of ⁶_ΛH^{*}(1⁺) followed by γ-decay to ⁶_ΛH(0⁺)
 - Why no population of ${}^{6}_{\Lambda}H^{*}(1^{+})$ in J-PARC E10?
- Very small $\Lambda N-\Sigma N$ mixing for ${}^{6}_{\Lambda}H$?
 - Population of ${}^{6}_{\Lambda}$ H(0⁺) and ${}^{6}_{\Lambda}$ H^{*}(1⁺) is sensitive to mixing

•Structure of ${}^{6}_{\Lambda}$ H?

• Core nucleus ⁵H may affect largely to structure of ${}^{6}_{\Lambda}$ H

Smallness of cross section is not easy to understand

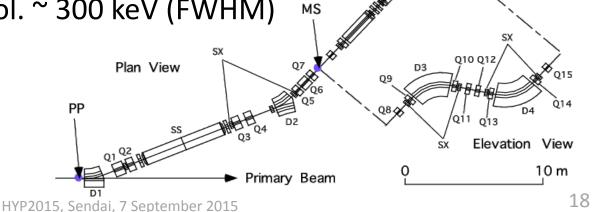

• Information of other hypernuclei (${}^{9}_{\Lambda}$ He etc.) is necessary

Near future plans at J-PARC

- Neutron-rich hypernuclei to be studied
 - ${}^{9}_{\Lambda}$ He : I=2 (2nd phase of J-PARC E10)
 - Core nucleus is particle-stable halo-nucleus ⁸He
 - Ground state 1/2⁺ is particle-stable and suitable to study ΛN-ΣN mixing effect. Non spin-flip amplitude is enough to populate 1/2⁺.
 - Also excited states 3/2⁺ and 5/2⁺,⁸He^{*}(2⁺)+Λ(1/2⁺), may be particle-stable. Information of ⁸He excited states may be extracted indirectly.
 - ${}^{12}_{\Lambda}$ Be : I=3/2 (proposed by K. Tanida)
 - Parity inversion in ¹¹Be. Ground state is 1/2⁺ instead for 1/2⁻. What's happening in ¹²_ABe? Measurement of low-lying 0⁻, 1⁻, 0⁺ and 1⁺ states may be possible.

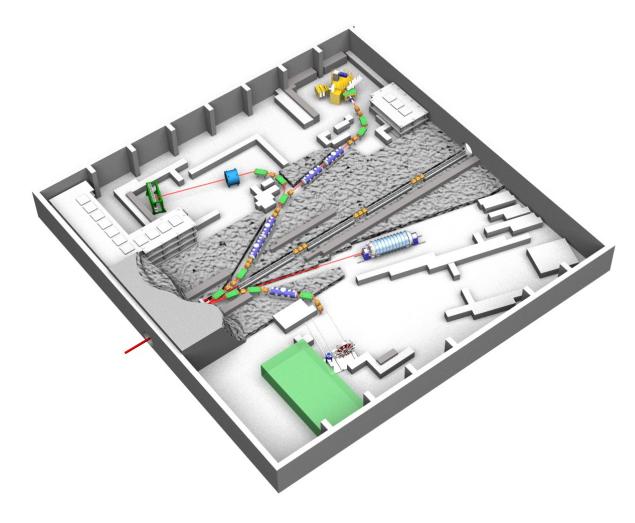
Near future plans at J-PARC

- K1.8 beam line and S-2S spectrometers
 - S-2S for spectroscopy of Ξ hypernuclei
 - (K⁻,K⁺) reaction up to 1.8 GeV/c
 - Developed by T. Nagae and S. Kanatsuki
 - Installation in 2017?
 - Momentum resolution is better than SKS
 - SKS: dp/p ≈ 1-2 × 10⁻³@0.8 GeV/c
 - S-2S: dp/p ≈ 0.6 × 10⁻³@1.3-1.4 GeV/c
 - S-2S is useful also for the (π^- ,K⁺) reaction

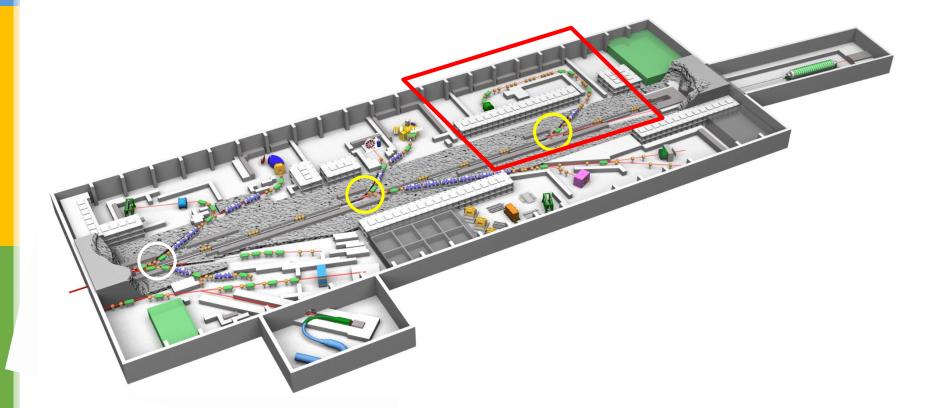

Setup

HYP2015, Sendai, 7 September 2015

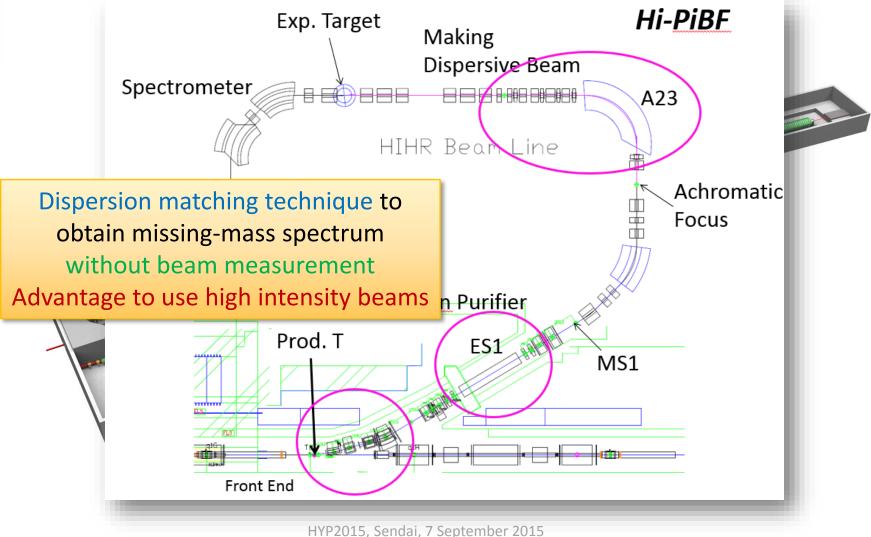
Future plan at J-PARC


Systematic study of neutron-rich hypernuclei

- Should override tiny production cross section
 - At least 10 times higher beam intensity (> 10⁸/spill)
- High-Intensity and High-Resolution (HIHR) beam line and spectrometer
 - Originally designed by H. Noumi
 - Ideal beam line and spectrometer for DCX
 - No beam measurement is necessary
 - Miss. mass resol. ~ 300 keV (FWHM)


Proposal of HD hall extension

Hadron-hall layout plan and HIHR


Proposal of HD hall extension

Hadron-hall layout plan and HIHR

Proposal of HD hall extension

Hadron-hall layout plan and HIHR

Summary

$\hfill \mathsf{Study}$ of Λ hypernuclei close to neutron drip-line

- Glue-like effect may extend boundary of stability
- $\Lambda N-\Sigma N$ mixing and neutron-rich hypernuclei
- Promising spectroscopic tools
 - Double charge-exchange (DCX) reaction is one of promising spectroscopic tools
- Several studies by DCX reactions are in progress
 - KEK E521 successfully produced ¹⁰ Li
 - FINUDA and J-PARC E10 made measurement of ⁶ΛH
 - Structure of ${}^{6}_{\Lambda}$ H is not clear yet
- Future plans at J-PARC
 - ${}^{9}_{\Lambda}$ He and ${}^{12}_{\Lambda}$ Be as near future plans
 - HIHR beam line and spectrometer after HD hall extension