Study of Λ hypernuclei closeto neutron drip-lineAtsushi Sakaguchi (Osaka University)

for the J-PARC E10 Collaboration

Some properties of A hypernuclei

- Property 1: "glue-like role" of Λ hyperon
 - Some examples of the "glue" effect

The 2nd Korea-Japan Workshop on Nuclear and Hadron Physics at J-PARC @ Pusan National Univ.

- Property 2: effect of "ΛN-ΣN mixing"
 - Discussed by Gibson, Goldberg and Weiss in 1972
 - mixing could be large due to relatively small energy gaps

in hypernuclei

$$m(\Delta N) - m(NN) \approx 293 \text{ MeV/c}^2$$

$$m(\Sigma^{-}p) - m(\Lambda n) \approx 80.5 \text{ MeV/c}^{2}$$
$$m(\Sigma^{0}N) - m(\Lambda N) \approx 77.0 \text{ MeV/c}^{2}$$
$$m(\Sigma^{+}n) - m(\Lambda p) \approx 75.0 \text{ MeV/c}^{2}$$

- Quantitative discussions made only for several hypernuclei
 - A=3-5 (${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He and ${}^{5}_{\Lambda}$ He), Z=5 (${}^{10}_{\Lambda}$ B and ${}^{11}_{\Lambda}$ B)
- " $\Lambda N-\Sigma N$ mixing" is also general phenomenon
- Non-zero isospin of core nucleus is essential in mixing
- Studies of mixing effect in neutron-rich hypernuclei are inevitable to understand properties of the mixing effect

ΛN-ΣN mixing effect in detail

- Different shells contribute differently to the mixing
 - $\Lambda(\Sigma)$ is in s-shell for low-lying states
 - Nucleons are in s-shell and higher-shells

- s-shell and higher-shell contributions may be different, and we wish to separate these contributions if possible
- Separation may be possible by neutron-rich hypernuclei
 - Pure s-shell: s-shell hypernuclei (e.g., ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He)
 - Pure p-shell: p-shell neutron-rich hypernuclei (e.g., ${}^{9}_{\Lambda}$ He)
 - Interplay: s-shell neutron-rich hypernuclei (e.g., ${}^{6}_{\Lambda}$ H)

Aims of J-PARC E10 experiment

- Aim 1: extend boundary of stability of nuclei
 - Planning to produce ${}^{6}_{\Lambda}$ H and ${}^{9}_{\Lambda}$ He

Λ may stabilize ⁵H nucleus

by the "glue" effect ${}^{6}_{\Lambda}$ H may be particle stable hyperheavy hydrogen

⁸He is a typical halo nucleus excited 2^+ state is unbound

 Λ may change structure of core $\Lambda + {}^{8}\text{He}(2^{+})$ may be particle stable

Aim 2: investigation of ΛN-ΣN mixing

• Precise measurement of binding energy of ${}^{6}_{\Lambda}H$

Y. Akaishi et al. Frascati Phys. Ser. XVI (1999) 59

Suggestion of the calculation

Normal ΛN interaction B_{Λ} ~ 4.4 MeV

Coherent $\Lambda N-\Sigma N$ mixing B_{Λ} ~ 4.4 + **1.4 MeV**

Difference is considerably large experimentally accessible

Our basic idea

Precise measurement of B.E. \rightarrow estimate mixing effect

How to produce n-rich hypernuclei?

- Use double charge-exchange (DCX) reactions
 - Category of reactions to produce Λ hypernuclei
 - NCX: (π^+, K^+) and (K^-, π^-) reactions
 - **SCX**: (e,e'K⁺), (π^-, K_S) , (K⁻, π^0) reactions, etc.
 - **DCX**: (π^-, K^+) and (K^-, π^+) reactions

Previous experiments with DCX

- Experiments by the (stopped- K^-,π^+) reaction
 - **KEK-PS**: K. Kubota et al. NP A602 (1996) 327
 - Upper-limits of BR(DCX) for ${}^{9}_{\Lambda}$ He, ${}^{12}_{\Lambda}$ Be and ${}^{16}_{\Lambda}$ C
 - FINUDA: M. Agnello et al. PL B640 (2006) 145
 - Upper-limits of BR(DCX) for ${}^{6}_{\Lambda}$ H and ${}^{7}_{\Lambda}$ H
 - FINUDA: M. Agnello et al. PRL 108 (2012) 042501
 - observation of 3 candidate events of ${}^{6}_{\Lambda}$ H bound state
 - BR(DCX) / BR(NCX, ${}^{12}_{\Lambda}$ C) ~ 3×10⁻³

Confirmation and precise determination of mass (or binding energy) are necessary in E10 experiment

- Experiments by the (π^-, K^+) reaction
 - KEK E521: S. Pranab et al. PRL 94 (2005) 052501
 - Pilot experiment for J-PARC E10 experiment

KEK E521 experiment

- Demonstrated production of n-rich hypernuclei by DCX
 - Measured the ${}^{10}B(\pi^-, K^+){}^{10}{}_{\Lambda}Li$ reaction
 - core nucleus ⁹Li is bound, we are sure ${}^{10}_{\Lambda}$ Li is well bound
 - good hypernucleus to evaluate DCX reaction

Experimental Setup of E10

• K1.8 beam line in hadron-hall of J-PARC 50GeV PS

- 1.2GeV/c pion beams, typical intensity ~10M/spill
- Momentum resolution of beam line $dp/p\sim3\times10^{-4}$

The 2nd Korea-Japan Workshop on Nuclear and Hadron Physics at J-PARC @ Pusan National Univ.

BFT

1mm¢ fibers

2

BFT (beam fiber tracker) design

- - 2 layers staggered by 0.5mm
 - $160 \times 2 = 320$ fibers
- Read out
 - MPPC+EASIROC
 - Flexible and easy to handle

- SKS for kaon measurement
 - Mom. resolution $dp/p \sim 10^{-3}$
 - Large acceptance ~100msr
 - Moved KEK \rightarrow J-PARC
- Detector upgrades done

January 2010 before earthquake (photo by K. Tanaka)

tracking and trigger detectors were enlarged to make momentum acceptance wider

Prospects of E10 experiment

- ${}^{6}_{\Lambda}$ H production run in Dec. and Jan. (E10 1st phase)
 - E10 run conditions and expected yields

Parameters	Values	
Pion beam momentum	1.2 GeV/c	
Pion beam intensity	10 M/spill	← high intensity beams
Total number of pions (run for 3 weeks)	3T pions	
Target thickness (⁶ Li)	3.5 g/cm ²	\leftarrow optimized for yield
DCX cross section (assumed)	10 nb/sr	and resolution
SKS acceptance	100 msr	← large acceptance
Spectrometer efficiency	0.5	
Analysis efficiency	0.5	
Estimated ⁶ _A H yield	265	

• About 6 times larger yields than KEK E521

Binding energy measurement

• Prospect of B.E. measurement of ${}^{6}_{\Lambda}H$

Assumptions missing-mass resolution

 $\approx 2.5 \text{ MeV}(\text{FWHM})$

 ${}^{6}{}_{\Lambda} H$ yield

 ≈ 300 events

⁶_{Λ}H/QF ratio (Ex<23MeV) $\approx 1/10$ estimated from ⁴_{Λ}He and ¹⁰_{Λ}Li

Peak is well separated from QF Statistical error of B.E. < 0.1MeV

Summary

- Properties of Λ hypernuclei
 - "glue-like role" of Λ hyperon in hypernuclei
 - effect of "ΛN-ΣN mixing"
- Aims of J-PARC E10 experiment
 - Extend the boundary of stability of nuclei by the "glue" effect
 - Estimate $\Lambda N-\Sigma N$ mixing from B.E. of neutron-rich hypernuclei
 - Produce neutron-rich hypernuclei: ${}^{6}_{\Lambda}$ H and ${}^{9}_{\Lambda}$ He
- E10 prospects (E10 phase-1 in December and January)
 - 6 times larger yield than previous E521 experiment
 - precise measurement of **B.E.** of ${}^{6}_{\Lambda}$ H is possible