Study on Λ -hypernuclei at J-PARC with intense pion beams

S.Ajimura, H.Bhang, L.Busso, D.Faso, T.Fukuda, T.Kishimoto, Y.Mizoi, O.Morra, H.Noumi, H.Outa, P.K.Saha, A.Sakaguchi, T.Takahashi

Osaka, Seoul, Torino, INFN, OsakaEC, INAF-IFSI, KEK, RIKEN, JAEA Collaboration

Motivation

- Intense kaon beams will be available
 - beam intensity is a few X 10⁶ kaons/spill
 - with 30GeV, 9μA primary proton beams
- Provide us also very intense pion beams
 - roughly X1000 higher than kaons
 - a few X 10⁷ pions/spill with conventional detectors
 - one order higher than experiments in the past
- experiments with intense pion beams
 - available even at the beginning of J-PARC

Hadron Experimental Hall

K1.8 beam line and SKS

Proposing 2 experiments at J-PARC E10 and E22

- Production of neutron-rich hypernuclei
 - Double Charge-eXchange (DCX) reaction

- Study on non-mesonic weak decay
 - Weak decay of A=4 hypernuclei (⁴_^He, ⁴_^H)
 - Precise determination of decay amplitudes

E10: Neutron-rich hypernuclei

Exotic Λ-hypernuclei

Example of "hydrogen"

Super Heavy Hydrogen No evidence ¹H Stable ²H Stable Resonance ³H Stable No evidence glue like role of Λ ² H Not bound ⁵_^H No evidence ³_AH Stable ⁶_^H Stable? ⁴_^H Stable ⁷_^H Stable? We can produce at J-PARC Hyper Heavy Hydrogen

Yield estimation: ⁹₁He production

- Cross section ~10nb/sr (1/1000 of NCX)
- Major difficulty in this experiment

Parameters	Values
π^{-} beam momentum	1.2 GeV/c
π^- beam intensity	1 x 10 ⁷ /spill ← High intensity beams
PS acceleration cycle	3.4 s/spill
⁹ Be target thickness	3.5 g/cm^2
Reaction cross section	10 nb/sr
Spectrometer solid angle	0.1 sr ← Large acceptance
Spectrometer efficiency	0.5
Analysis efficiency	0.5

- 310 events in 3 weeks
 - 7 times larger ← KEK-E521 (47 events)
 - Discussion on level structure possible

E22: Non-mesonic weak decay

Mesonic weak decay (MWD) similar with free decay of Λ properties are predictable

Non-Mesonic weak decay (NMWD) new decay mode in hypernuclei proton- and neutron-stimulated $\Lambda p \rightarrow np$, $\Lambda n \rightarrow nn$ properties are not well known yet

spin

Decay amplitudes

- Block and Dalitz approach
 - Initial Λ -N in S-wave (s-shell hypernuclei)
 - Introduced 6 independent amplitudes (a ~ f)
 - Initial spin (¹S₀ or ³S₁)
 - Final isospin (0 or 1)
 - Parity change (yes or no)

Branching Ratios

Initial	Final	Matrix element	Rate	I_f	Parity change
${}^{1}S_{0}$	$^{1}S_{0}$	a	a^2	1	$\frac{1}{1}$
	${}^{3}P_{0}$	$\frac{b}{2}(\sigma_1-\sigma_2)q$	b^2	1	$\frac{1}{\text{yes}} \int {}^{1}S_{0}(I=1)$
${}^{3}S_{1}$	${}^{3}S_{1}$	c	c^2	0	no
	$^{3}D_{1}$	$\frac{d}{2\sqrt{2}}S_{12}(q)$	d^2	0	$^{\text{no}} > {}^{3}S_{1}(I=0)$
	${}^{1}P_{1}$	$\frac{\sqrt{3}}{2}e(\sigma_1-\sigma_2)q$	e^2	0	yes $\int S_1(I-0)$
	${}^{3}P_{1}$	$\frac{\sqrt{6}}{4}f(\sigma_1+\sigma_2)q$	f^2	1	$yes - {}^{3}S_{1}(I = 1)$

isospin

parity

Status of amplitudes

Status of measurements
A=4 and 5 (${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, ${}^{5}_{\Lambda}$ He)
strong constraint from ${}^{5}_{\Lambda}$ He
other constraints are loose

Our prospects

new measurement of ⁴_ΛHe np-ratio with 15% accuracy

Estimation of ⁴_{Λ}He Yield

- Important factor in design of experiment
 - Tiny branching ratio of An→nn channel
 - BR(4 _{Λ}He, Λ n \rightarrow nn) ~ 0.01 (?)
 - BR(${}^{4}_{\Lambda}$ He, Λ p \rightarrow np) = 0.16 \pm 0.02

- Produce ⁴ He as much as possible
 - use ${}^{4}\text{He}(\pi^{+},K^{+}){}^{4}_{\Lambda}\text{He reaction (dσ/d}\Omega\sim10\mu\text{b/sr)}$
 - high intensity pion beams (K1.8 beam line)
 - large acceptance spectrometer (SKS)
- 19,000 ${}^4_\Lambda$ He/day \rightarrow 0.5M ${}^4_\Lambda$ He in 4 weeks

Setup for decay measurement

- Large acceptance and high efficiency for NN
- Good PID capability $(n/p/\pi/\gamma)$

neutron: $\Omega/4\pi \approx 0.4$, $\varepsilon \approx 30\%$ proton: $\Omega/4\pi \approx 0.25$, $\varepsilon \approx 80\%$

Estimation of yield of NMWD

Parameters	Values	
Acceptance for decay proton Acceptance for decay neutron Efficiency for proton Efficiency for neutron Branching ratio of Λp→np process Branching ratio of Λn→nn process	0.25 0.4 0.8 0.3 0.01 0.1	large acceptance and high efficiency

- 1,300 Λp→np and 75 Λn→nn in 4 weeks
 in case of
 in case of
 10% BR
 1% BR
- We can achieve 15% statistical error

Summary

- Experiments with intense pion beams
 - Feasible even very early stage of Day-1

- Two experimental proposals
 - Production of neutron-rich hypernuclei
 - New neutron-rich hypernuclei (⁹, He and ⁶, H)
 - Information on ΛN interaction in n-rich hypernuclei
 - Production of exotic hypernucleus ⁶ AH
 - Study on non-mesonic weak decay
 - Detailed study on A=4 hypernuclei (⁴_ΛHe and ⁴_ΛH)
 - Precise determination of decay amplitudes