Production of Λ hypernuclei close to neutron drip-line

Atsushi Sakaguchi (Osaka University) for the **J-PARC E10** Collaboration

Some properties of Λ hypernuclei Property 1: "glue-like role" of Λ hyperon

We already know many examples

Property 2: effect of "ΛN-ΣN mixing"

- Discussed by Gibson, Goldberg and Weiss in 1972
 - mixing could be large due to relatively small energy gaps

in normal nuclei

 $m(\Delta N) - m(NN) \approx 293 \,\mathrm{MeV/c^2}$

in hypernuclei

 $m(\Sigma^{-}p) - m(\Lambda n) \approx 80.5 \text{ MeV/c}^{2}$ $m(\Sigma^{0}N) - m(\Lambda N) \approx 77.0 \text{ MeV/c}^{2}$ $m(\Sigma^{+}n) - m(\Lambda p) \approx 75.0 \text{ MeV/c}^{2}$

- Discussions made only for several hypernuclei
 - A=3-5 (${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He and ${}^{5}_{\Lambda}$ He), Z=5 (${}^{10}_{\Lambda}$ B and ${}^{11}_{\Lambda}$ B)
- " ΛN - ΣN mixing" is also general phenomenon
- Non-zero isospin of core nucleus is essential
 - studies of mixing effect in neutron-rich hypernuclei are inevitable to understand properties of the mixing effect SNP12 @ Osaka Electro-Communication University, 27 August 2012

We wish to produce these hypernuclei close to neutron drip-line

Aim 2: investigation of ΛN-ΣN mixing Precise measurement of binding energy of ⁶ H

Suggestion of the calculation

Normal AN interaction $B_{\Lambda} \sim 4.4 \text{ MeV}$

Coherent $\Lambda N-\Sigma N$ mixing B_{Λ} ~ 4.4 + 1.4 MeV

Difference is considerably large experimentally accessible

Our basic idea

Precise measurement of B.E. \rightarrow estimate mixing effect

Y. Akaishi et al. Frascati Phys. Ser. XVI (1999) 59

How to produce n-rich HY?

• Use double charge-exchange (DCX) reactions

- Category of reactions to produce Λ hypernuclei
 - NCX: (π^+, K^+) and (K^-, π^-) reactions
 - SCX: (e,e'K⁺), (π^-, K_S), (K⁻, π^0) reactions, etc.
 - **DCX**: (π^-, K^+) and (K^-, π^+) reactions

Previous experiments with DCX • Experiments by the (stopped- K^-,π^+) reaction **KEK-PS**: K. Kubota et al. NP A602 (1996) 327 • Upper-limits of BR(DCX) for ${}^{9}_{\Lambda}$ He, ${}^{12}_{\Lambda}$ Be and ${}^{16}_{\Lambda}$ C • **FINUDA**: M. Agnello et al. PL B640 (2006) 145 • Upper-limits of BR(DCX) for ${}^{6}_{\Lambda}$ H and ${}^{7}_{\Lambda}$ H • FINUDA: M. Agnello et al. PRL 108 (2012) 042501 • observation of 3 candidate events of ${}^{6}_{\Lambda}$ H bound state • BR(DCX) / BR(NCX, 12 $^{\Lambda}$ C) ~ 3×10^{-3}

impact of FINUDA result to E10 experiment will be discussed later

- Experiments by the (π^-, K^+) reaction
 - **KEK E521**: S. Pranab et al. PRL 94 (2005) 052501
 - ◆ Pilot experiment for J-PARC E10 experiment

KEK E521 experiment

Demonstrated production of n-rich HY by DCX

- Measured the ${}^{10}B(\pi^-, K^+){}^{10}{}_{\Lambda}Li$ reaction
 - core nucleus ⁹Li is bound, we are sure ${}^{10}_{\Lambda}$ Li is well bound
 - good hypernucleus to evaluate DCX reaction

(π^-, K^+) reaction and mixing effect

Beam momentum dependence of cross section
 Obtained in KEK E521 experiment

pion beam momentum	1.05 GeV/c	1.2 GeV/c
$^{10}\mathrm{B}(\pi^{-},\mathrm{K}^{+})^{10}{}_{\Lambda}\mathrm{Li\ cross\ sections}$	$5.8{\pm}2.2$ nb/sr	11.3 ± 1.9 nb/sr

• Favors "one-step" reaction mechanism • Naïve processes of DCX: Two-step reactions $\underline{\pi}^{-} + p \rightarrow \underline{K}^{0} + \Lambda, \quad \underline{K}^{0} + p \rightarrow \underline{K}^{+} + n$ $\underline{\pi}^{-} + p \rightarrow \underline{\pi}^{0} + n, \quad \underline{\pi}^{0} + p \rightarrow \underline{K}^{+} + \Lambda$ • "One-step" reaction mechanism

$$\underline{\pi^{-}} + p \rightarrow \underline{K^{+}} + \Sigma^{-}, \quad \underline{(\Sigma^{-}p)} \rightarrow (\Lambda n)$$

beam momenta are close to Σ threshold

tro-Communication University, 27 August 2012

 $\sigma(1.05 \,\mathrm{GeV/c})$

 $< \sigma$ (1.2 GeV/c)

Impact of FINUDA results

- Candidate events of bound ${}^{6}_{\Lambda}H$
 - Bound candidates are quite encouraging for E10
 - Although E10 can observe unbound states, bound states may be observed more clearly in missing-mass spectrum.
- ◆ BR(DCX) was about 3/1000 of BR(NCX)
 - Ratio was close to ratio we assume for DCX
 - \blacklozenge we assume DCX/NCX ratio for (π,K) reaction is 1/1000
 - ${\ensuremath{\bullet}}$ this fact was also encouraging for E10 experiment
- Indication of g.s. doublet splitting $\sim 1 MeV$
 - Population of excited state by DCX reaction?
 - We have to make carful analyses for the g.s. region
 - we have to carefully look at peak shape in missing-mass spectrum and its angular dependence

11

Experimental Setup of E10 K1.8 beam line in hadron-hall of 50GeV PS

- ◆ 1.2GeV/c pion beams, typical intensity ~10M/spill
- ♦ Momentum resolution of beam line dp/p~3×10⁻⁴

Prospects of E10 experiment

- ${}^{6}_{\Lambda}$ H production run in winter (E10 phase-1)
 - E10 run conditions and expected yields

Parameters	Values	
Pion beam momentum	1.2 GeV/c	
Pion beam intensity	10 M/spill	← high intensity beams
Total number of pions (run for 3 weeks)	3T pions	
Target thickness (⁶ Li)	$3.5 \mathrm{~g/cm^2}$	← optimized for yield
DCX cross section (assumed)	10 nb/sr	and resolution
SKS acceptance	$100 \mathrm{msr}$	\leftarrow large acceptance
Spectrometer efficiency	0.5	
Analysis efficiency	0.5	
Estimated ${}^{6}_{\Lambda}$ H yield	265	Ý,

About 6 times larger yields than KEK E521

Binding energy measurement
 Prospect of B.E. measurement of ⁶_AH

Summary

• Properties of Λ hypernuclei

- "glue-like role" of Λ hyperon in hypernuclei
- effect of " ΛN - ΣN mixing"
- ♦ Aims of J-PARC E10 experiment
 - Extend the boundary of stability of nuclei by the "glue" effect
 - Estimate ΛN-ΣN mixing from B.E. of neutron-rich hypernuclei
 - Produce neutron-rich hypernuclei: ${}^{6}_{\Lambda}H$ and ${}^{9}_{\Lambda}He$
- ◆ E10 prospects (E10 phase-1 in this winter)
 - 6 times larger yield than previous E521 experiment
 - precise measurement of B.E. of ${}^{6}_{\Lambda}H$ is possible