Possibility of experimental study on the (γ,K) reaction mechanism

Atsushi Sakaguchi (Osaka University)

Study on photoproduction of strangeness

 Motivations and status
 Experimental approach

 What we can do at SPring-8/LEPS ?

 Summary

Photoproduction of Strangeness (motivation & status)

Study of baryon spectrum

Reflects nature of QCD at non-perturbative region

Quark model predicts many baryons as qqq states

Predicted N*	1/2+	3/2+	5/2+	7/2+	1/2-	3/2-	5/2-	7/2-	sum
$M_N \sim 1.7 GeV$	2				2	2	1		7
1.7GeV ~ 2.0GeV	3	4	3	1	1	1			13
2.0GeV ~ 2.2GeV	1	1			4	4	3	1	14

N* and Δ^* : extensively studied by the π +N reaction

- π +N threshold: $M_{\pi}+M_{N}=1.08$ GeV < $\Delta(1232)$, N(1440), ...
- σ ~ 10mb
- Partial wave analysis \rightarrow spin/parity of resonance

Additional information from the γ +N reaction

- γ +N threshold: M_N=0.94GeV
- σ ~ 10μb
- EM property of resonance

Missing resonances as well known problem

• Predicted resonances are still missing at M>1.7GeV

observed / predicted	N and N*	Δ^*	
 M _N ~1.7GeV	7 / 7	3/3	
1.7GeV ~ 2.0GeV	3 / 13	5 / 8	$K\Lambda/K\Sigma$ open
2.0GeV ~ 2.2GeV	1 / 14	2 / 6	

- Small coupling to πN channel
- Prediction of possibility of strong coupling to KY channel Some quark models predict $\Gamma_{\rm K} > \Gamma_{\pi}$ (about 10 states ?)
- Motivates experimental study on KY channel

Very precise measurement is not easy

- $\sigma(\pi+N\rightarrow K+Y) \sim 100\mu b$ pol.N, pol.Y self analyzing $\sigma(\gamma+N\rightarrow K+Y) = 1-1$
- $\sigma(\gamma + N \rightarrow K + Y) \sim 1\mu b$ pol. γ , pol.N, pol.Y

Theoretical predictions are quite helpful

• $D_{13}(1900)$ may have large KA width

Study on reaction mechanism: $\gamma N \rightarrow \pi N$ vs KY channels

Reaction mechanism may be simple

• t-channel

πN channel: π (0⁻; I=1), ρ (1⁻; I=1), ω (1⁻; I=0), ...

 \Rightarrow KY channel: K (0⁻; I=1/2), K*(1⁻; I=1/2), ...

 \Rightarrow K⁰Y channel: K*(1⁻; I=1/2), ...

Simple isospin structure

• s-channel

 πN channel: N* and $\Delta^* \Rightarrow K\Lambda$ channel: N*

Complementary with πN channel

• Photoproduction of pseudo-scalar meson $\gamma N \rightarrow \pi N, KY, \eta N, ...$

• We can check applicability of models proposed for πN to KY

Status of studies: the (γ ,K) reaction at s^{1/2} <2GeV

Competition with resonance and non-resonant terms

Ν

N

• Contributions are same order

N*

 Λ^*

Ν

resonance

 Non-resonant terms grow with energy Major contribution is t-channel

- Theoretical prediction
- Forward peaking of $d\sigma/d\Omega$

Linear increase with photon energy

- Maybe OK as general tendency
- Not realistic at higher energy

Κ

₩ K*

 K_1

Κ

Y*

Κ

X Y

Κ

Born

N

Recent theoretical improvement is significant

• Old calculations had unphysical divergence

- Hadronic form factor
- Recovery of gauge invariance
 - (γ, K^+) channel
 - Agreement up to ~2GeV
 - (γ, K^0) channel
 - Relatively poor
 - Recipe dependence

• Spin observables are sensitive

Give more clear discrimination of theoretical treatment

• Other efforts in theory

Use Regge propagator instead for Feynman propagator

T.Mart et al. nucl-th/0002036

- Better property at higher energy
- Significant improvement for (γ,K⁰) channel
- Prediction on other observables ?
- Recipe is not established yet

N* resonance in (γ, K^0) channel

- Δ^* dominance in $p(\gamma, K^+)\Sigma^0$ channel
- Inclusion of a I=1/2 resonance, $P_{13}(1720)$, improve the total cross section fit
- $p(\gamma, K^+)\Sigma^0$ and $p(\gamma, K^0)\Sigma^+$ are complimentary

High energy behavior ($E\gamma > 5 \text{ GeV}$)

- Mechanism is relatively well established
 Simple due to dominance of t-channel
 Treatment with Regge propagator
 - K/K₁ and K* trajectories

Keep gauge invariance

• K/K₁ and K* separation may be possible

• Spin observables

 Σ ~1 is interpreted with K* exchange dominance

- Natural parity exchange $\rightarrow \Sigma = +1$
- Unnatural parity exchange $\rightarrow \Sigma = -1$

Good guide line for experiments at 2~3GeV region

Possible Experimental Approach at SPring-8/LEPS

LEPS parameters

Photon beam

- $E\gamma = 1.5 \sim 2.4$ GeV and tagged
- $N\gamma = 500$ kcps
- Alomost 100% polarized Linear and Circular

Spectrometer

- Good PID and resolution
- $\theta_{\rm K}({\rm lab}) < 20$ degrees $\cos\theta_{\rm K}({\rm cm}) > 0.6$

Target

- Liquid H₂
- Liquid D_2 (to be available)

counter

• Various nuclear targets

Dipole mag

ToF wa

Vertex detector(SSD)

The (γ, K^+) reaction

Suitable to study general feature of reaction mechanism

- SPring-8/LEPS already has large amount of data
- Expect large yield

Detector acceptance large and analysis efficiency high We can see Ey, θ_K and t dependences

• Study on $K\Lambda$ and $K\Sigma$ channels

On cross section, SAPHIR and CLAS made a good job

• We have to confirm these data

New data on beam polarization asymmetry (Σ) —

• What can we discuss ?

Sumihama's talk

looks to be consistent with K*-exchange dominance, but should be careful to kinematical effect

Detail study on t-dependence

- We have high statistics data at small t region
- Separation of K- and K*-exchanges

The (γ, K^0) reaction

Complementary with the $N(\gamma, K^+)\Sigma$ reaction

- Experimental study are scarce (SAPHIR up to 1.5 GeV)
- Relatively smaller yield

Detector acceptance small and analysis efficiency low

• Measure $K^0 \rightarrow K_S \rightarrow \pi^+\pi^-$ (about 35%)

Experimental considerations

- Clear identification from vertex and invariant mass
- Efficient trigger for $K_s \rightarrow 2\pi$

- Possibility to discriminate theoretical models $p(\gamma, K^+)\Sigma^0$ and $p(\gamma, K^0)\Sigma^+$ has
 - different sensitivity to N* and Δ^*
 - Similar non-resonant diagram contributions but different EM couplings

 $p(\gamma\!,\!K^0)\Sigma^{\scriptscriptstyle\!+}$ is poorly reproduced by theoretical models

- Several models were proposed to improve energy dependence of cross section
- Beam polarization asymmetry may provide new information

Summary

- Study of photoproduction of strangeness motivated by missing resonances in baryon spectra reaction mechanism of photoproduction of pseudo-scalar mesons reaction mechanism may be simple
- Status of experiment and study
 - New data from SAPHIR, LEPS, JLAB ...
 - Theoretical treatments in wider energy range become possible
 - Understanding at higher energy may be a good guide line
- What we can discuss with LEPS data ?
 - Energy dependence of beam polarization asymmetry
 - Detail study of t-dependence
 - Comparison between the (γ, K^+) and (γ, K^0) reactions